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Turbulence by Electrostatic Fluctuations

by
C.M. Tchen

National Bureau of Standards, Washington, D.C.

Abstract

The spectra of turbulence and densify fluctuations in a plasma are derived from
a hydrodynamic description., The turbulent spectrum is governed by a turbulent
cascade process, a viscous dissipation, and a diffusion by electrostatic fluctuations.
The density spectrum is governed by a density cascade process and a dissipation by
collisions. The strong and weak interactions between waves are considered in the 2
cascade processes. The integral equations for the spectral functions are solved for
the following three subranges: inertial-convection subrange, viscous-diffusive sub-

range, and inertial-diffusive subrange.

*
This work was supported by the National Aeronautics and Space Administrationm,

Contract R-127,



I. INTRODUCTION

The investigation of the equilibrium spectrum of hydrodynamic turbulence has
been initiated by Kolmogoroff1 and Heisenberg2 . Later theoretical and experimental
efforts have confirmed their results, The essential feature of the problem of hydro-
dynamic turbulence is the cascade process, and was elaborated semi--empirically2 on the

basis of the Navier-Stokes equation.

In a plasma, the fluctuations in density of the charged particles set up electro-
static fluctuations, and consequently add a diffusion to the above cascade process of
the momentum transfer. In this way, one may conceive that the hydrodynamic equation
of Navier-Stokes may be still valid, when such an electrostatic process of diffusion
is incorporated. On the other hand, the density fluctuations should follow a classical
diffusion equation. It is hoped that such a system of equations will describe plasmas
of high ionization where the electrostatic process is important, as well as plasmas
of low ionization where the electrostatic process is negligible in the momentum trans-
fer. 1In the latter case experiments of turbulence in a weakly ionized gas ( 0.001%

. . . 3
ionization) has been made by Granatstein, etc.” .,

' A.N. Kolmogoroff, C.R. Acad. Sci. (USSR) 30, 301(1941); 32, 16(1941).

“ W. Heisenberg, 2. £. Phys. 124, 628(1948).

3 V.L. Granatstein, §.J. Buchsbaum and D.S. Bugnolo, Phys. Rev. ietters‘16, 504(1966).
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In the following pages, we propose to use the above system of equatioms for

describing a plasma of high and low ionizations, and to derive the spectral func-
tions of turbulence and density fluctuationms.

I1. FUNDAMENTAL EQUATIONS
We use the Navier-Stokes equation for describing the turbulent fluctuations in

velocity u of the plasma; the collisions between the ionized particles and the

neutral host gas are written in the form of a kinematic viscosity p .

We have
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Here X 1is a stochastic force (noise), representing fluctuations in pressure and
~

brownian movements. The pressure is lumped in this way, because it is relatively

unimportant in the study of energy spectrun. Moreover we shall assume

<Xu>= 0
Further m

is the mass, n

is the fluctuation in number-density, E

is the self-
consistent electric field, satisfying the Poisson equation
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and e is the charge: + |e| for ions and -|e| for electrons. Sometimes it is

convenient to introduce an electric potential ¢ , such that

A diffusion equation is used for describing the fluctuations in concentration

or number-density of a plasma:

2
%%'+ w %& = XA Q_%_ s 3

where )\ 1is the molecular diffusion coefficient.

When we introduce the Fourier transform

@ ile,
we,x) = [ dk u(rk)e ,

-

and similar formulas for n and E Eqs. (1) - (3) are transposed to

3 2
(3 + 20K) <ugft, k) uft, -k)>
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= -J" dk' ik! < u
~ j j
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+ §<Ej(t,}5) u(t, k) > + e.c. (4)



by 2 o - T ' ' ' !
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+c. c. , (5)
ik 2
S E = -5 @ (6)
m e~
k
-ik = E ,
where
2 2
w = b4re/m ,

and (c. c.) represents similar complex conjugate terms. It is noted that the equa-

tions for u and n have been written in terms of energy.
~

III, SPECTRAL DECOMPOSITION

We introduce the following spectral functions:
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Evidently G¢ » G, and G are related through formulas (6):

E

; c = & g | (7)

Further we introduce the notations of vorticities:

2]

2

R(k) = 2 [dk kKF
0
s 2
J(k) = 2 [dk %
0

The Fourier components and the spectral functions are related by

k k
[deF(r) = & j‘dh<g(}3)g(-k)> ,
0 0
(8)
k k
[JdkG(k) = Kk [dk <n(k)n(-k)> 5
. 0 0
where
K o= L2’

and 2X is the length of truncation

X<x<+X

~




of the Fourier decomposition of Eﬂf) and n(f) . On the right hand sides of (8),

there are triple integrals

in a sphere of radius k .,

In terms of those new notations, the energy equations (4) and (5) become

k
- .é% J’dk F(k) = pR(K) + T(k) + DE(k) s
0
(9)
3 k
-5 Jdeax) = X J(k) +W(K) ;
0
where
k [+ 3]
b0 =k Fa Tt < uGer) w0 u G e CIERD w0 w09 > 5 (00
0 -

k ®
W(k) K j’d}i j‘d;s' 1k5 < uy (k-k') n(k') n(-R+ uj(-k:;;) (k) nk) >, (10b)

v -

and

<E@® u(-R) +ECR w0 > . (10c)

k
- e
D.(k) =K j‘dh =
0

The three functions T, W and D will be evaluated by approximate methods in the

E
following sectionm.



IV. CASCADE PROCESS IN STRONG INTERACTION AND SPECTRA IN THE INVISCID SUBRANGES

We introduce a phenomenological theory based on an extension of the mixing-
length hypothesis., The latter states that from the correlation between a concentration
n and a velocity u of the turbulent medium, in which the concentration is embedded,
thefe results a transport of concentration by turbulence, determined by two factors:
(i) a macroscopic density gradient of a large scale, and (ii) a diffusion coefficient
of the turbulent medium (uf), contributed by smaller eddies. If we distinguisﬁ two
groups of eddies: a group of large eddies k , carrying a density gradient -?& n(E),

and a group of smaller eddies k'(k' > k) , contributing to a diffusion coefficient

GO

" then the mixing of the two waves results in a transport of concentration by turbu-

lence
A() (k') = - By, o Tk R0
Also we have
! oage) uGek) = @y, o K nlo (11a)
Similarly
e u () w kD = el s K (11b)



Upon substitution of relations (ll) into

T(k)

W(k)

and

o=
[}

. . N
from dimensional reasonings” . Here ¥

We may remark that (uf) , which is

fluctuations, while

expressions (10), we find

= y Rk,
(12)
= y JE,
Jaw @, ,
k
-] 3 %
x [ dk F/x7)°, (13)
k

is a numerical constant.

the basis of Y is a diffusion by velocity

L<Eu> ,
m

which forms the basis of DE ,

is a diffusion by electrostatic fluctuations. Thus

we can find the structure of DE(k) by writing

k
a B
D (k) =const [ ax G k s

0
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where ¢« and B are found to be:

Q@ = -B=3/4,

by satisfying the dimensional conditions. Hence

k.
4
) = % fak @t (14)

0
where X, = numerical constant ur3

Upon substitution of (13) and (14) into (9), (10c) and (12), we can rewrite

Eqs.(9) in the form:

k k 3/4
- SBE' [ak F(e) = (p+ y) R + X J dx /1) ’ (15a)
0 0
and
5 K
- = [ackam) = A+ y) J(k) . (15b)
0

If we introduce the notations

(L
]

v < (/N2> |
(3, /3, ,

A < (an/axj)2 >

5
"
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then, for equilibrium spectra, Equations (15) reduce to

X 3.3/4
(w+y) RO - x, [k @D = (16a)

k

v

A+ y) Ik = & | (16b)

These are the 2 basic equations for determining the spectral functions of turbulence

and concentration (or electric field) under the conditions of strong interaction,

We shall investigate the spectral laws in the inviscid subranges, also called

the inertial and convective subranges, where

y > > )

In these subranges, the system of equations (15) reduces to

x, [ ax @/ ,

Y R(k)

and
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After substitution for 2% from the second equation, and after differentiationm,

the first equation of the system becomes:

Iy 3/4
e 1F = x, ¢ e fac@nh @nd o .

k

The second term between the brackets is negligible, as the inertial subrange of the

G spectrum does not contribute much to the vorticity J(k) . Hence we obtain

< 3/4
WF = ¥ 6 [ & cnd’t (17)
K

The new system of equations (17) and (16b) yield the following solutions:

F=AKS>, (18a)
and
-1
G=B k (18b)
where
A = (34 b7)2/15 ,
-1 .2.4/15
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From formulas (7) and (18b), we find
Cp " Bt k° . (15c)

It is to be noted that the dissipation rate eA alone determines the inertial and
convective subranges of both F and G spectra. The turbulent spectrum F in
formula (18a) drops faster than the k-5/3 law (Kolmogoroff law), because here the

cascade is draired by an additional diffusion from electrostatic fluctuations.

V. SPECTRA IN THE VISCOUS AND DIFFUCIV . SUBRANGES WITH STRONG INTERACTION
BETWEEN TURBULENCE AND ELECTROST/ YL FIELD

In the viscous and d ...lusive subranges, we have

Vi <<y and Y << A .
The viscous and diffusive dissipations being dominant at large k , the diffusion

by electrostatic fluctuations is negligible, and the system of equatiomns (16)

reduce to

]
3

W + p) R(K)

\+ vk) J(k)

A differentiation gives

2p K5 - X E/E R(k »®) = 0

’

2126 - X E/RDE S »m) =0 .
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The solutions are

F = (X eu/zuz)2 L
(20)
and -
Xe Xe _
G = 2” 2>‘ K7
2y 2\

With those solutions (20), it can be verified that the electrostatic diffusion

- 3/4
x; [ ax @/
K

is indeed small, as compared with the cascade flow

in order to justify such an assumption used in Eqs.(19).

The first of the solutions (20) is in agreement with the viscous law of the

- P 2
turbulent spectrum found by Heisenberg .
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VI. WEAK INTERACTION BETWEEN TURBULENCE AND ELECTROSTATIC FIELD

The cascade process based on the mixing-length requires a condition of strong

interaction. For a weak interaction, we can rewrite Eq. (3) in its Fourier

transform:
(k) @ 2
5t + J diikg uy ek (e’ = X ad)

By multiplying each member by its complex conjugate, and assuming a stationary

process we have

-
2 4 J " 1 1
XK <n) n(-l)> = [ [k de kK <u (k') u R ak') nGkD >

-0

A weak interaction between u and n may be assumed, when the spectrum of n
undergoes a diffusive dissipation, while the spectrum of u is maintained in its

inertial cascade process, This occurs when we have

p<<ax .

The case of weak interaction is relevant to a plasma where a weak concentration
of ionized particles are carried by a strong turbulent fluid. The latter fluid

can be considered as neutral, the weak electrostatic diffusion being negligible,.
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For a weak interaction, the arguments of u and n in the integrand are of

different order of magnitude:

and

hl_}iﬂ > > k" ;

or

k>> k' ) k > > k"
Consequently we can write
< ui(}fflf.') uj(-l’g+ }S') n(k') n(-}cv") >

= < (9 uy (-l > <n(k) nC-ED>

Hence
’ Kt < n(k) n(-k) >
- ) )
" i i PR T TR | .
= < ui(}&) uJ(-}S‘) > < J d’lg ki n(k?) | dK K" ‘(_:l::,) s
- o

2
= 5<u (9 v >< /X)) >,
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for isotropic turbulence. The spectral functions follow

2 4 1
)\kG=§JwF 3
where
Jm=J(k=°3),

2
< (Bn/axj) > .
Equation (2la) can be transformed into the following familiar form:

(X+y) Ik = & ,

with the following new values of iL and e:>t

-]
2 2
% - [ ak r/”
k
and
T U0 -
In the above transformation, we have neglected the term
"2
-2y [ax®c

(21a)

(21b)

(21c)
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as compared to

-2y, fak' 6,
for large k .

When the G spectrum undergoes a diffusive dissipation, while the F spectrum

is in the inertial cascade process (inertial-diffusive subranges),the solution of
Eq. (2la) is

J
© 4
G = 2 k F

3x

If the F spectrum assumes the Kolmogoroff law of the inertial subrange, without

diffusion by electrostatic fluctuation, then

5/3

F=A k , (22a)
and
o -17/3
G= — Ak ; (22b)
3X '
where

2/3
Al = (8€V/9x) .
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The contribution of the diffusion term

X, [ak (G/k3)3/4 )

k

for G in the dissipative subrange at large k , is negligible.

However, it is to be remarked that, when a strong interaction could still
exist between the turbulence and the electrostatic field, in the diffusive subrange
of the G spectrum, especially near the lower k part of the subrange, then instead
of Eq. (21b), we would use Eq. (l6b). After differentiating the latter equationm,

we would get
S
-X (F/k3)2 J(k » o)+ 2) kZG =0,

with the solution:

L o
G= —% Afk13/3 . (23)

3
This law (23) was used by Granatstein, Buchsbaum and Bugnolo to interpret the initial

portion of the diffusive subrange of the G spectrum in a2 weakly ionized plasma,



VII. CONCLUSION

The spectrum of turbulence is governed by a turbulent cascade process, a viscous
dissipation, and a diffusion by electrostatic fluctuations. The density spectrum
which characterizes the distribution of density or electrostatic fluctuations, is
governed by a density cascade process, and a dissipation by collisions. The turbu-
lent cascade is controlled by a strong interaction between waves, while the density
cascade may be controlled by a strong interaction or a weak interaction between the
density and the velocity waves. The mechanism of strong interaction is formulated by
a phenomenological theory, based upon the mixing-length hypothesis extended to waves.
The mechanism of weak interaction is formulated by degenerating the fourth order
correlation in density and velocity fluctuations into a product of two second order
correlations. The equations determining the spectra are derived in the form of

integral equations. The solutions for the following cases are found:

Case (a). 1In a plasma of high ionization, as characterized by the dominant
role of the electrostatic diffusion in the turbulent spectrum, the intervals of the

inviscid (inertial and convective) subranges of the two spectra coincide, when

~

v A s

and for values of k ., such that

v, >>v vk>>x .
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Since the intervals of the inviscid subranges coincide, and the ionization
is high, a strong interaction should govern the cascade, and the spectra are

found to be

rxf
[}

const k_ s

and

-1
const k »

@
]

see (18a) and (18b). The turbulent spectrum drops faster than the 5/3-law of
Kolmogoroff, because the cascade is accompanied by a sink in the form of electro-

static diffusion,

Case (b). 1In the collisional (viscous and diffusional) subranges of the two

spectra, for values of k such that

y <<v 5 Yy <<a
the spectra follow the k-7 law, see (20):
-7
F = const k s
and
G = const k-7 .

The electrostatic diffusion at such high values of k 1is negligible. Thus the

same results hold for plasmas of high and low ionizatioms,
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Case (c). Consider a plasma with a low ionization, where a small number of
charged particles diffuse in a turbulent field of high Reynolds numbers. Moreover,

the electron temperature is much larger than the gas temperature, so that
p<<A2A .

It follows that the density spectrum cannot maintain a sizable convective subrange,

but noticeably will undergo & molecular diffusive regime, with
Yy >>v and ;k <<X ,

while the turbulent diffusivity E& , see (21c), is being provided by the turbulent
spectrum maintained at the inertial subrange. Because of such different regimes,
the density cascade is contributed by waves in weak interactions, see (21b) and (2lc).

It follow that the density spectrum in the diffusive subrange will be

G = const k-17/3 s

see (22b),



